The PLK4–STIL–SAS-6 module at the core of centriole duplication

نویسندگان

  • Christian Arquint
  • Erich A. Nigg
چکیده

Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plk4-dependent phosphorylation of STIL is required for centriole duplication

Duplication of centrioles, namely the formation of a procentriole next to the parental centriole, is regulated by the polo-like kinase Plk4. Only a few other proteins, including STIL (SCL/TAL1 interrupting locus, SIL) and Sas-6, are required for the early step of centriole biogenesis. Following Plk4 activation, STIL and Sas-6 accumulate at the cartwheel structure at the initial stage of the cen...

متن کامل

DNA replication licensing factor Cdc6 and Plk4 kinase antagonistically regulate centrosome duplication via Sas-6

Centrosome number is tightly controlled during the cell cycle to ensure proper spindle assembly and cell division. However, the underlying mechanism that controls centrosome number remains largely unclear. We show herein that the DNA replication licensing factor Cdc6 is recruited to the proximal side of the centrioles via cyclin A to negatively regulate centrosome duplication by binding and inh...

متن کامل

Cell-cycle-regulated expression of STIL controls centriole number in human cells.

Control of centriole number is crucial for genome stability and ciliogenesis. Here, we characterize the role of human STIL, a protein that displays distant sequence similarity to the centriole duplication factors Ana2 in Drosophila and SAS-5 in Caenorhabditis elegans. Using RNA interference, we show that STIL is required for centriole duplication in human cells. Conversely, overexpression of ST...

متن کامل

Drosophila Ana2 is a conserved centriole duplication factor

In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP-orthologues of ZYG-1, SAS-6, and SAS-4, respectively-are required for centriole duplication. Strikingly, all three fly prot...

متن کامل

Asterless Licenses Daughter Centrioles to Duplicate for the First Time in Drosophila Embryos

Centrioles form centrosomes and cilia, and defects in any of these three organelles are associated with human disease [1]. Centrioles duplicate once per cell cycle, when a mother centriole assembles an adjacent daughter during S phase. Daughter centrioles cannot support the assembly of another daughter until they mature into mothers during the next cell cycle [2-5]. The molecular nature of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016